Scaffolds for Intracerebral Grafting of Neural Progenitor Cells After Cerebral Infarction: A Systematic Review
نویسندگان
چکیده
CONTEXT Intracerebral grafting of neural progenitor cells is a promising potential treatment to improve recovery after stroke, but the structural disruption and cavitation of brain tissue that occurs creates an unfavorable environment for graft cell survival. To overcome this obstacle, scaffold materials have been used as extracellular matrix to provide structural support for the transplanted cells. Many materials could potentially be used as scaffolds for this application. EVIDENCE ACQUISITION We performed a systematic review to determine the available evidence supporting specific scaffolds for neural progenitor cell grafting after stroke. Articles were identified with a MeSH search on PubMed. Relevant references and "related articles" of selected manuscripts were also reviewed. Full original articles published prior to May 2013 presenting unique experimental data describing intracerebral grafting of neural progenitor cells in a scaffold after cerebral infarction were included in our study. All selected articles were reviewed thoroughly by the authors for relevant data. RESULTS We found reports of use of scaffolds composed of polyglycolic acid, poly [lactic-co-glycolic acid] particles (with and without VEGF), hyaluronan-heparin-collagen hydrogel, Matrigel, collagen and extracellular matrix derived from porcine brain and urinary bladder. While multiple beneficial effects were reported, the optimal scaffold is unclear as we found no direct comparisons. CONCLUSIONS We conclude that multiple scaffolds appear promising for neural progenitor cell grafting after stroke, but further research is needed to optimize this neurorestorative approach. Thus, we hope to provide a basic understanding of the state of scaffolds for neural progenitor cell grafting after stroke and to encourage further research. Based on the methods of the discussed studies, we propose a standardized set of outcomes that would best be used to evaluate and compare the effectiveness of a given scaffold.
منابع مشابه
The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold
Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...
متن کاملAssociation between Intracerebral Hemorrhage and Cerebral Palsy in Preterm Infant: A Systematic Review Article
Background: Intracerebral hemorrhage (ICH) is a type of intracranial bleed that occurs within the brain tissue or ventricles. The present study aimed to review the association between ICH and cerebral palsy (CP) in the preterm infants. Materials and Methods: <s...
متن کاملO13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats
Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...
متن کاملA Review of the Factors Affecting the Proliferation of Neural Stem and Progenitor Cells
Neural stem cells are undifferentiated cells that are located in limited areas of central nervous system. These cells have proliferation and self-renew ability and can be differentiated into neurons and glial cells. Mature nerve cells do not have proliferative ability; and due to the limited number of nerve stem cells, injuries to the nervous system are not recoverable. The purpose of this revi...
متن کاملTherapeutic metallic ions in bone tissue engineering: A systematic review of the literature
An important field of bone tissue engineering (BTE) concerns the design and fabrication of smart scaffolds capable of inducing cellular interactions and differentiation of osteo-progenitor cells. One of these additives that has gained growing attention is metallic ions as therapeutic agents (MITAs). The specific biological advantage that these ions bring to scaffolds as well as other potential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2015